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ABSTRACT 

This paper presents an analytical method to facilitate 
design of a spherical magnetic bearing (SMB) for a multi-DOF 
rotational stage. Both passive and active regulations of the 
SMB are considered. We formulate the SMB dynamic model 
along with the method of computing the magnetic force and 
torque required to null any deviation of the rotor, which 
requires solving the magnetic field.  For this, we introduce 
and validate a general method, referred to here as distributed-
multi- pole (DMP) modeling method which requires only a 
limited set of known (numerical or experimental) field 
solutions, to derive closed-form solutions for precise 
calculation of the magnetic field around a permanent magnet 
(PM). The DMP method has been validated by comparing its 
modeled potential field and flux density against analytical 
solutions, as well as the computed force (using DMP modeled 
field) against published experimental data; both show excellent 
agreement.  Finally, we demonstrate the concept feasibility of 
the spherical magnetic bearing, and analyze its dynamics and 
control performance using the DMP modeled field and 
computed force/torque. 
 
I. INTRODUCTION 

Growing demands for miniature devices in modern 
industries such as micro-machining of biomedical and optical 
components along with the trend to downscale equipment for 
manufacturing these products on “desktops” [1], have 
motivated the development of novel actuators for machine 
tools.  Precision machining of complex-shaped objects often 
need high-speed dexterous manipulation of the cutter 
orientation; this calls for more rotational freedoms (in addition 
to translations) with a minimum number of passive joints that 
are common sources of wear and tear.  Existing multi-DOF 
rotational stages typically use a combination of single-axis 
actuators to control orientation. Driven by the stringent 
accuracy and tolerance requirements, various forms of micro-
motion parallel mechanisms [2-4] with three or more single-
axis actuators were proposed.  Although these multi-DOF 
mechanisms are structurally more rigid, they are bulky, require 
more passive joints than the number of DOF of the motion 
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stage, and offer very limited motion range. Unlike many 
existing orientation stages, ball-joint-like actuators [5-6] 
(capable of three-DOF orientation in a single joint) offer an 
attractive alternative to eliminate motion singularities of the 
multi-DOF rotational stage.  

An essential component in the precision multi-DOF 
rotational stage is a high-performance contact-free bearing. 
Existing magnetic bearings are typically designed for 
generating radial and axial forces/moment to support a single-
axial rotating shaft [7] [8] or for regulating translational 
motions [9] with a very small range of shaft inclination. 
Magnetic bearings have complicated dynamic motion and are 
often difficult to stabilize due to vibration caused by 
unbalanced mass, inertia and any other disturbances [10-12].  

Design and control of multi-DOF electromagnetic 
actuators require a good understanding of the magnetic fields, 
and involve real-time calculation of magnetic forces. Numerical 
methods (such as FEM) are computationally expensive for 
design optimization or real-time control. Due to the lack of 
time-efficient methods for computing magnetic fields and 
forces, practitioners have resorted to simple empirical lumped-
parameter models that often yield only 1st-order accuracy. An 
alternative method as a tool to characterize magnetic fields has 
been based on the concept of a magnetic dipole (originally 
suggested by Fitz Gerlad in 1883).  While the dipole model 
has been widely used to analyze the magnetic field at a 
sufficiently large distance for applications [13-15] such as 
electromagnetic wave propagation (antenna dynamics) and 
geomagnetism (earth polarization), it generally gives a poor 
approximation when the length scale of the field is very small. 
For reasons including compact formulation/solutions and 
intuitive magnetic fields, many researchers (for examples, [16] 
and [17]) continue to develop dipole models for analyzing 
actuator designs involving permanent magnets (PM). Nedelcu 
et al. [16] used a magnetic dipole model to describe the field of 
a PM-based device, where each PM is modeled as a doublet. 
While the model in [9] provides a concise computational 
formula for the field and the energy flow, it has difficulties to 
obtain an accurate magnetic field. De Visschere [17] later 
pointed out a number of mistakes when comparing the dipole 
1  Copyright © 2007 by ASME
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approximation [16] against an analytical 2D magnetic field 
solution of a permanent magnet. The existing single dipole 
model, which bases on the mathematical theory of a doublet, is 
often studied in the context of physics and valid only for 
needle-like magnets; thus, it has very limited applications in 
modern actuator designs.  

Historically, ferromagnetic cores were commonly used in 
electromagnetic actuators. The widely available high-coercive 
rare-earth permanent magnets at low cost have begun to change 
that usage, and air-cored electromagnets are now commonly 
seen in iron-less motors, and have potential for magnetic 
bearing applications. To further explore the use of high-
coercive rare-earth permanent magnets for actuator applications 
where multi-DOF motion is of particular concerned, there is a 
need for a more efficient alternative that helps practitioners 
analyze designs and avoid costly prototyping. Modern design 
methodologies rely on analytical models and the magnetic field 
problems associated with multi-DOF PM-based actuators are 
rather difficult to model. For these reasons, we present here an 
innovative SMB, and an analytical method to facilitate its 
design for use in a multi-DOF rotational stage.  

The remainder of this paper offers the following: 

1. We begin with the design concept of a SMB for a three-
DOF spherical-motor-driven rotational stage, which offers a 
relatively large range of singularity-free motion while 
allows for contact-free manipulation. 

2. We formulate the dynamic model with the magnetic 
force/torque required to support the spherical rotor, which 
requires solving the magnetic field of the permanent 
magnets. Unlike general numerical methods that solve for 
the complete field, we introduce the DMP method, which 
requires a limited set of known field solutions, to derive a 
closed-form solution for precise calculation of the magnetic 
field around a PM. As will be illustrated, once the DMP 
model is found the corresponding magnetic field can be 
computed efficiently and be applied to the control of the 
SMB. The DMP models have been validated by comparing 
against analytical solutions and published experimental 
data.   

3. We demonstrate the concept feasibility of the SMB by 
analyzing its dynamics using the DMP modeled field and 
computed force and torque; both passive and active SMB 
regulations have been considered.  

 
II. DESIGN CONCEPT OF A SMB 

Figure 1 illustrates the design concept of a spherical 
magnetic bearing (SMB), which consists of two functional 
subsystems; a PM-based bearing system, and an 
electromagnetic (EM) regulator.  

The PM-based SMB (designed to balance the moving stage 
statically in the absence of any external load) is made up two 
components; a moving PM embedded in the nonmagnetic 
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spherical rotor on which the shaft for the maching table (not 
shown) is attached, and two rings of eight PM’s. In Fig. 1, the 
bold arrows denote the direction of the PM magnetization.  

 
Fig. 1 Design concept of a SMB 

The focus here is the design of the SMB for a spherical-
motor-driven rotational stage that offers three-DOF ball-joint-
like orientation in a single joint.  In Fig. 1, the function of the 
four PM’s in the upper ring is primarily to compensate for any 
gravitational effects on inclination. The four PM’s on the lower 
ring balance the static weight replacing the use of mechanical 
stabilizing counterweights which would lower the response 
speed. As shown in Fig. 1, the rotor center is regulated using 
repulsive magnets. Unlike an attractive pair of magnets which 
behave as a “mechanical spring with a negative stiffness” and 
is inherently an unstable system, the combination of an 
electromagnet (EM) and the two rings of repulsive magnets 
(which behave essentially as non-contact mechanical springs) 
tends to drive the rotor center to equilibrium.  

The SMB is contact-free and has no mechanical damping; 
any perturbation on the rotor will result in un-damped 
oscillations. To decouple the bearing regulation from the 
orientation control of the spherical motor, five electromagnets 
are designed to provide electronic damping and active 
compensation against un-modeled dynamics.   

II.1Dynamic Model 
The rotor has six-DOF, [ ]T( , , ) ( , , )x y z α β γ= T Rq q q  as 

defined in Fig.2, where h is the deviation of the rotor center 
with respect to the stator XYZ reference frame.  

 
Fig. 2 Coordinate system  

In general, the rotor dynamics can be characterized by (1):   
0=Mq + C(q,q) + Q�� �  (1) 
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m is the mass of the rotor; RM is the 3×3 inertia matrix of the 
rotor; R R RC (q ,q )� is an 3×1 vector of centrifugal and Coriolis 
terms; and TQ and RQ are the respective generalized force and 
torque (3×1) vectors which include the gravity terms.  For 
completeness and clarity, the terms in the dynamic equation (1) 
are detailed in Appendix A, where the center of mass of the 
moving stage is defined at (xc, yc, zc).  
II. 2 Magnetic Forces and Torques 

In (1) where the details are given in Appendix A, the forces 
F(Fx, Fy, Fz) and torques T(Tx, Ty, Tz) acting on the boundary of 
the moving (cylindrical) magnet due to the magnetic field B 
can be calculated using Maxwell stress tensor Γ defined as 

2
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where μ0 is free space permeability; and n is the normal of the 
material interface. For a cylindrical magnet,  
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where [ ]T
1 3 0 0 1= − =n n  is the surface normal of the top 

and bottom circular surfaces (S1 and S3) respectively; and 
[ ]T

2 cos sin 0θ θ=n  is that of the circumferential surface S2. 
Since (3) computes the force and torque on the given field, B is 
the total magnetic field from both the PM’s and EM’s modeled 
in the surface integration.   

II.3 Magnetic Field Model 
The solutions to the force/torque equations (3a) and (3b) 

require solving the magnetic field. We model the PM and EM 
using the concept of distributed multiple poles (DMP). This 
DMP method provides us a means to derive closed-form 
solutions for characterizing the magnetic field B that satisfies 
the following assumptions: the field is continuous and 
irrotational; and the medium is homogeneous. These enable us 
to define a scalar magnetic potential Φ such that the magnetic 
field intensity H given by 

= −∇ΦH  and 0μ=B H  (4) 
satisfies 2 0∇ Φ = . The solution to Laplace’s equation, which 
satisfies the field for a magnetic pole, is given by  

( 1)
4

j

m
Rπ

−
Φ =  (5) 

where m is the strength of the pole; j takes the value 0 or 1 
designating that the pole is a source or a sink respectively; and 
R is the distance from the pole to the field point.  A single 
pole does not exist alone in a magnet filed; we define a dipole 
here as a pair of source and sink separated by a distance A .  
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To account for the shape of a physical magnet,  we model 
the cylindrical magnet (radius a, length A  and o zM=M e ) using 
multiple dipoles as shown in Fig. 3, where k circular loops 
(each with radius ja ) of n dipoles are uniformly spaced in 
parallel to the magnetization vector.   

 
Fig. 3 DMP model of a cylindrical magnet 

In Fig. 3, jiR + and jiR − , which are the distances from the ith 
pair of source and sink respectively in the jth loop to any point 
P(x,y,z), are given by   

( )22 22 cos sin / 2ji j jx a i y a i zR θ θ± ⎡ ⎤ ⎡ ⎤= − + − +⎣ ⎦ ⎣ ⎦ ∓ A  (6) 

where 0,1,...,j k= ; ( )/ 1ja aj k= + ; and 0 < <A A . A general 

method to determine the unknowns (k, n, A , and mj where j = 0, 
…, k) in the DMP model is given in Appendix B.  Since 
Laplace equation is linear, the magnetic field Φ(x,y,z) of the 
PM can be obtained by summing the magnetic fields 
contributed by the individual poles: 

0 1

1 1 1
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Similarly, the magnetic flux density at P can be found from (4). 
Since ( ) 21/ (1/ )RR R∇ = −a  where ( )/R R=a R , 

2 2
0 14

a a
B

knk
Rji Rjio

j
j i ji ji

m
R R

μ
π

+ −

= = + −

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑   (8) 

Equations (7) and (8) offer a closed-form solution to determine 
the 3D magnetic field of a PM. The total field B can be 
obtained from the vector sum of the individual fields.  The 
force and torque on the boundary of the moving magnet can be 
calculated from (3a) and (3b) respectively. 

II. 4 Perturbation Dynamics and Feedback Control  

To analyze the effect of small perturbations on the 
dynamics of the multi-DOF orientation stage, we neglect the 
effect of centrifugal/Coriolis terms, and linearize the rotor 
dynamics about the desired operating point or d =q 0 : 

c
ˆˆ ˆ=Mq + Q F��  (9) 

where ˆ =Q Q - Q , and dˆ = − =q q q q . Since the moving 
magnet is symmetric about the z-axis of the rotor, the spin 
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E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



 

angle γ has no effect on the bearing design.  Thus, the system 
requires only five EM’s (or voice coils) to control the three 
translational and two orientation deviations. Based on this, a 
PD controller (through the five voice coils) can be designed as  

ˆ
p d= − −cF K q K q�  (10) 

where Kp and Kd are the positive position and velocity control 
gain matrices. 
 
III. VALIDATION OF DMP MODEL 

To validate the DMP model for computing of the magnetic 
forces and torques, the following two examples are computed. 

Example 1: Magnetic field  

We model the magnet P1 ( 2 / 0.75a =A ) and P2 ( 2 / 1a =A ) 
as shown in Fig. 1 using the procedure outlined in Appendix B.  
The values of the PM parameters (both with constant o zM=M e ) 
are tabulated in Table 1.  

Table 1 Values of the parameters (k=1, n=6) 
Poles 

Fig. 1(a) 
2a× A  
mm 

Mo 

Tesla /A A  m (n=1, k=6) 
(T/m2)×1.0e-4 

P1 (δ=100°) 19.05×25 1.2 0.712 mo=−0.072; m1i=0.874 
P2 (η=30°) 12.7×12.7  1.2 0.514 mo=−0.209; m1i=0.567 

Rotor radius =19.05mm; gap h = 1 mm; moving mass =5.5 kg 

We compute the magnetic potential and flux density along 
the z-axis and the y direction on / 2z = A surface.  For the 
purpose of validation, we compare the computed results of the 
DMP models (7) and (8) against analytical solutions in Fig. 4.  

 
(a) (0,0, 2 / ) / oz MΦ A A  (b) (0,0, 2 / ) / o oz MμB A   

 
(c) (0, / , / 2) / oy a MΦ A A  (d) (0, / , / 2) / o oy a MμB A  

Fig, 4 Normalized potential and flux density 

Since the analytical solutions of the closed-form potential 
and flux density are available only along the z-axis, which are 
given respectively by (B.2) and (B.3) in Appendix B, we  
numerically integrate the general integral given in [18] to 
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obtain the analytical solution of the magnetic scalar potential 
along the y-axis. To avoid the singularity at the surface, the 
ΦA(0, y, / 2A ) values are solved numerically with 6' 10−+R ; 
no significant difference in results was found when 310Rε −≤ . 
Once ΦA is found, the magnetic flux density can be computed 
from (4).   

The results are compared in Fig. 4 and Table 2 where the 
integrated squared-error in Φ is defined in (B.1) and similarly 
for B; the comparison shows excellent agreement. As expected, 

(0, / , 2 / 1)y a z =B A has a higher % error than (0,0,2 / )zB A  
because the computation was near the singularity at the surface.   

Table 2: Integrated squared-error (%) 
PM (0,0, 2 / ) / oz MΦ A A  (0,0,2 / ) / o oz MμB A  (0, / , / 2) / o oy a MμB A  

P1 1.0827 3.80% 9.84% 
P2 0.9995 3.42% 6.41% 

 
Example 2: Force Computation with DMP Models 

To examine the effect of the DMP model on the force 
computation, we compute the repulsive force between two 
identical magnets using the Maxwell stress tensor (2) where B 
is the combined field of the two permanent magnets modeled 
using the DMP method.  To validate the DMP-based force 
computation, this case study modeled the setup given in [19], 
where the pair of permanent magnets is separately mounted on 
two cantilever beams. One of magnets is driven by a precision 
NSK ball-screw while the other carries a strain-gage that 
measures the repulsion force for a specified distance d between 
the two PM axes as shown in Fig. 5.  

Along with the values characterizing the two identical 
magnets, the forces computed using the DMP model are 
compared in Fig. 5 against the three different types of 
published data given in [19]; namely, the experimentally 
measured forces, the forces computed using the analytical 
solutions with Φ integrated numerically, and the forces 
computed using mesh-less method (MLM) with strong form 
formulation (SFF).  

The comparisons are remarkably close; this validates the 
DMP modeling method as well as the effectiveness of the 
closed-form field solutions. 

  
Fig. 5 Repulsion between two PM’s [19] 

x

z 

g
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(a= A =6.35mm, air gap g =0.5mm, and μ0M0=1.35T) 
 
IV. SIMULATION RESULTS AND DISCUSSIONS 

To illustrate the use of the DMP model for design analysis 
of the SMB, we compute the magnetic field, forces and torque 
along the two planes (α=0° and α=45°) as shown in Fig. 6(a) 
and simulate the perturbation dynamics with and without 
feedback control. 

 

 
(a) Plan view and view definitions 

 

  
Side View A-A (α=β=0°) Side View A-A (α=0°, β=20°) 

  
Side View B-B (α=45°, β=0°) Side View B-B (α=45°, β=20°) 

  
Plan view (α=β=0°) Plan view (α=0°, β=20°) 

(b) no inclination  (c) 20° inclination 
Fig. 6 Potential and flux density fields 

IV.1 Computed Magnetic Fields and Forces of PM’s  

Figure 6 offers three different views for visualizing the 
total magnetic field; side view-A-A, side view B-B and plan 
view as illustrated in Fig. 6(a). Figures 6(b) and (c) graph the 
magnetic flux lines of the permanent magnets for β=0° and 
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β=20° respectively; as expected, the scalar potential and 
magnetic flux field are orthogonal to each other.    

Once the total magnetic field B is known the repulsive 
forces and torques acting on the moving magnet P1 can be 
calculated using (3a,) and (3b) respectively with Maxwell 
tensor defined in (2). As an illustration, we compute the 
magnetic forces ( xF and zF ) and torque yT in the rotor x-z 
plane about the equilibrium point q=0.  The results are shown 
in two columns in Fig. 7.   

 

 

 
(a) no inclination, β=0 (b) no deviation, x=z=0 

Fig. 7 Computed magnetic forces and torques 

In Fig. 7(a), the forces and torque are computed as a 
function of deviations in x or z direction with β=0°.  Fig. 7(b) 
computes the effect of β on the forces and torque.  Some 
observations can be made from the results: 
1.  The z-component force zF  is dominant, and increases as the 

z-component deviation decreases; this is expected since the 
SMB is designed to support the static weight of the moving 
stage.  As shown in Fig. 7(b), zF  has a maximum at β=0° 
and monotonically reduced by 20% at β=±20°. 

2.  Although only two orthogonal pairs of stator PM’s in an 
XY plane are used, the magnetic force xF and torque yT are 
relatively uniform within the range of translational motion 
as shown in Figs. 7(a) and 7(b). 

 
IV. 2 Effect of PD feedback Control on SMB 
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 Because of symmetry, the effect of small displacement 
variations on the SMB dynamics can be illustrated using the 
perturbation model in the XZ plane (with α=γ=0).  For a 
linearized model with [ ]Tˆ , ,x z β= =q q , we have in (10), 

Tˆ ˆ ˆ ˆ
x z yF F T⎡ ⎤= ⎣ ⎦Q   (11) 

and  ( )2 2, , ( )c cdia m m mx z= +M  (12) 

where 1
ˆ

x xF k x k β≈ +  (13a) 

 2
ˆ

z zF k z k β≈ +  (13b) 

and 3ŷ RT k x k β≈ + . (13c) 

Along with a listing of the linearized spring constants used 
in the simulation, Figure 8 shows the responses of the open-
loop system to an initial perturbation. Since the system has no 
mechanical damping, the natural frequencies (eigenvalues) are 
directly a direct reflection of the equivalent spring constants 
which are coupled among the x, z, and β equations of motion. 
Thus, the dynamic responses to initial perturbations show a 
combination of high and low frequencies.  

 

 

 

m=5.5kg,  xc=3, zc=5 mm 
 

1
ˆ

x xF k x k β≈ +  
426.7N/mxk =  

1 75.3Nm/radk =  
 

2
ˆ

z zF k z k β≈ +  
841.2N/mzk =  

2 148.6N/radk =  
 

3ŷ RT k x k β≈ +  
25.6Nm/mRk =  

3 0.54Nm/radk =  
 

Open-loop poles: 
    ±j20.6,  ±j2.1, 

±j29.0 
 

Initial conditions: 
   (1mm, 1mm, .01rad) 

 
Fig. 8 Open-loop response to initial perturbation 

As a comparison, we simulate the closed-loop responses to 
the same initial perturbation in Fig. 9. The gain matrices of the 
closed loop system are  

500p =K I  and 100d =K I . 
The corresponding closed-loop poles are 

−3.84, −2.09, -46.16, −47.91, -5.71, -44.29 
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The results are given in two column of Fig. 9.  As shown 
in the right column or Fig. 9(a), the responses to the initial 
perturbation are well damped and require less than 0.5N 
restoring forces.  Clearly, the intent here is to demonstrate the 
concept feasibility of the SMB.  Once the operational 
principle and the design method of the SBM are proven and 
well understood, the DMP model can be used to optimize the 
parameters and to design Hall-effect sensors for the orientation 
measurements given a magnetic field.   The simulation results 
can be used to design the regulating EM voice coils. 

   

  

  

  
(a) Position and orientation (b) Forces and moment 

Fig. 9 Closed-loop response to initial perturbation 
 
V. CONCLUSIONS 

We have presented the design concept, dynamic model, 
and control of a spherical magnetic bearing (SMB), along with 
the method to compute the magnetic force and torque.  We 
have also introduced the DMP modeling method and derived 
closed form solutions to characterize the magnetic fields, from 
which the magnetic force and torque are derived using the 
Maxwell stress tensor. We also validated the DMP models by 
comparing the modeled potential field and flux density against 
analytical solutions, and by comparing the computed forces 
against published experimental data. Both show excellent 
agreement. With the validated models, we have demonstrated 
the concept feasibility of the spherical magnetic bearing by 
analyzing its dynamics and its control performance.   
6  Copyright © 2007 by ASME
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NOMENCLATURE 
Capitalized symbols Lowercase symbols 
B Magnetic flux density a Radius of PM 
C Coriolis matrix l Length of PM 
F x,y,z component forces m Dipole strength 
F Force generated by EM m Mass of the stage 
T x,y,z component torque n Surface normal vector 
H Magnetic flux intensity k Linearized spring constant 
I Moments of inertia qR Rotation vector  
M Mass matrix Greek letter symbols  
Mo Magnetization vector α, β, γ ZYZ Euler angles 
Sx sin (x) εR Error tolerance 
Cx cos(x) η, δ Locations of PM 
P1 Moving PM μο free space permeability  
P2 Stator PM Φ Magnetic potential 
Q Generalized forces/torques Γ Maxwell stress tensor matrix 
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APPENDIX A 
EQUATIONS OF THE ROTOR DYNAMICS 

 
The terms in the dynamic equation (1) are given by  
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2 2 2 2
1 2 3 2 1 3

2 2
2 1 2 1

3 3

0
0

I C I S S I S I I S S C I C

I I S S C I C I S
I C I

γ γ β β β γ γ β

β γ γ γ γ

β

⎡ ⎤+ + −
⎢ ⎥
⎢ ⎥= − +
⎢ ⎥
⎢ ⎥
⎣ ⎦

RM  (A.1) 

T
1 2 3C C C= ⎡ ⎤⎣ ⎦R R RC (q ,q )�  (A.2) 
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and 3 3C I Sβαβ= − �� . 
T

x y zF mgS C F mgS S F mgCβ γ β γ β⎡ ⎤= + − −⎣ ⎦TQ  (A.3) 

and  T
1 2 3Q Q Q= ⎡ ⎤⎣ ⎦RQ  (A.4) 

where 1 1 2 3( ) ( ) ( )x y zQ T G S C T G S S T G Cβ γ β γ β= − + + + + + , 

2 1 2( ) ( )x yQ T G S T G Cγ γ= + + +   

and  3 3( )zQ T G= +  
and where 1 c cG mgy C mgz S Sβ β γ= − , 2 c cG mgx C mgz S Cβ β γ= − − , and 

3 c cG mgy S C mgx S Sβ γ β γ= − . 

APPENDIX B 
PARAMETERS OF THE DMP MODEL 

The unknowns (k, n, A , and mj where j = 0, …, k) in the DMP model 
are solved by minimizing the error function (B.1) subject to 
7  Copyright © 2007 by ASME

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



constraints imposed by the magnet geometry and a limited set of 
known field solutions: 

[ ]2( ) ( )A
z

E z z dz= Φ − Φ∫  (B.1) 

where ( )A zΦ  is the analytical solution along the magnetization axis.  
For a cylindrical PM, the potential and flux density along the z-axis 
can be expressed in closed form [14]:   

( ) ( )( ) ( / 4)A oZ M A B A B− − + +⎡ ⎤Φ = − − −⎣ ⎦A  (B.2) 

1( )
2A o o

B B
B Z M c

A A
μ + −

+ −

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦
 where 

0 if 1
2 if 1

Z
c

Z
⎧ ≥⎪= ⎨ <⎪⎩

 (B.3) 

where ( )/ / 2Z z= A ; ( )/ / 2aγ = A ; 2 2A Bγ± ±= + and 1B Z± = ± . For a 
given specified residual magnetic flux density, we have from (12): 

 
( )= ( )=-A o A z= /2

/2 /2 μ ∇ΦB B
A

A A  (B.4) 
where B is given in (9). Since (10) accounts for the potential field 
along the magnetization axis, the remaining ( 1k n× + ) constraints are 
constructed from (8) and (9) along two other orthogonal directions. To 
avoid the singularity at ′=R R , we choose  

point
0 at surface

'lim RR R
ε

ε
→

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

where εR is a small positive number. For a cylindrical magnet, the field 
is uniform circumferentially and thus, we set the dipole moment 
mji=mj.   To minimize the field variation in the θ direction, we 
impose the following constraint on n: 

[ ] [ ]
[ ]

( ) ( )
100%

( ) , /2

Max Mean
Mean r a z

θ

θ θ
ε

θ
Φ − Φ

× ≤
Φ = =A

 (B.5) 

where εθ is a specified (positive) error bound.   
 
The procedure for modeling a PM is summarized as follows: 
Step 1:  Compute ΦA and BA analytically long the magnetization 

vector from (B.2) and (B.3) respectively 
Step 2:  Generate an initial set of spatial grid points (k, n). 
Step 3:  Formulate (7) and (8) in terms of the unknowns, A  and mji. 
Step 4: Find A  and mji by minimizing (B.1) subject to a set of 

constraints constructed from (B.2) and (B.3). Error computed 
by (B.1) is saved.  

Step 5:  Check if the condition (B.5) is met. If no, increase k or n, and 
repeat from Step 3. If yes, the optimal parameters (k, n, A  
and mji) can be obtained by minimizing (B.1) using Step 4. 
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